

		EN-Norm	DIN
Bezeichnung	Federbandstahl – kaltgewalzt, gehärtet, angelassen	1.1248 / 1.1248	Ck75 h + a / C75S h + a

Chemische Zusammensetzung nach EN 10132-4

Cr	Ni	Мо	Mn	Si	С	Р	S
max. 0.40	max. 0.40	max. 0.10	0.60 - 0.90	0.15 - 0.35	0.70 - 0.80	max. 0.025	max. 0.025

Werte (Gewicht %). Im Interesse der Homogenität und der konstanten Verarbeitungsqualität liegen die Herstellungstoleranzen in wesentlich engeren Bereichen als jene der hier angegebenen Norm.

Oberflächenausführung

Kaltgewalzt, gehärtet und blau angelassen

Abmessungen

Dicke	Breite
0.10 - 4.00 mm	2.00 – 300 mm

Die Möglichkeiten der Breiten sind abhängig von der Dicke / andere Breiten ab Werk.

Toleranzen

Dickentoleranzen

Nenndicke	Präzisionstoleranz	
mm	mm	
< 0.10	± 0.006	
0.10 - 0.12	± 0.007	
0.13 - 0.24	± 0.010	
0.25 - 0.59	± 0.015	
0.60 - 0.99	± 0.020	
1.00 - 1.49	± 0.025	
1.59 - 2.49	± 0.030	
2.50 - 3.00	± 0.040	

Breitentoleranzen nach DIN EN ISO 9445

Spezialtoleranzen Besondere Stärken- und Breitentoleranzen können in unserem Service-Center nach Ihren

Spezifikationen hergestellt werden.

Tafel Abmessungen

	Abmessung				
		mm			
0.10 x 300 x 2000	$0.30 \times 300 \times 2000$	0.60 x 300 x 2000	1.00 x 300 x 2000	2.00 x 300 x 2000	
$0.15 \times 300 \times 2000$	$0.40 \times 300 \times 2000$	$0.70 \times 300 \times 2000$	1.20 x 300 x 2000	$2.50 \times 300 \times 2000$	
$0.20 \times 300 \times 2000$	0.40 x 300 x 2000	0.80 x 300 x 2000	1.50 x 300 x 2000	$3.00 \times 300 \times 2000$	
$0.25 \times 300 \times 2000$	$0.50 \times 300 \times 2000$	$0.90 \times 300 \times 2000$	1.80 x 300 x 2000	4.00 x 300 x 2000	

Mechanische Eigenschaften

Nennmass mm	Zugfestigkeit MPa	Streckgrenze
0.10	1'885 - 2'040	
0.15	1′835 - 1′990	
0.20	1′785 - 1′940	
0.25	1'735 - 1'890	
0.30 - 0.35	1'690 - 1'845	
0.40 - 0.45	1'640 - 1'795	
0.50 - 060	1′590 - 1′745	ca. 90% der Zugfestigkeit
0.65 - 0.80	1'540 - 1'700	
0.85 - 1.10	1′490 - 1′645	
1.20 - 1.50	1′440 - 1′600	
2.00	1′395 - 1′550	
3.00	1′345 - 1′500	

Andere Festigkeitsstufen auf Anfrage.

Kleinster Biegeradius

Dicke	Biegung 90° Richtwerte
mm	Richtwerte
0.10 0.25 0.50 1.00	8 s
0.25	7 s
0.50	5 s
1.00	4 s

Rückfederung

Die Rückfederung beim Biegen von gehärtetem Bandstahl ist bedeutend und muss zwingend bei der Formgebung der Werkzeuge berücksichtigt werden.

Kaltverformungsverfahren

Stanzen und Kaltbiegen sind Kaltverformungsverfahren, die sich nachteilig auf die Federung auswirken können. Zur Wiederherstellung der ursprünglichen Federung müssen die Fabrikationsteile nach der Kaltverformung $^{1}/_{2}$ bis 1 Stunde bei 225°C angelassen werden

Physikalische Eigenschaften

Elastizitätsmodul, E	20 ºC	210 GPA	
mittlere Wärmeausdehnungskoeffizient	20 ºC - 100 ºC	10.8 (10 ⁻⁶ * K ⁻¹)	
Dichte (spezifisches Gewicht)	-	7.86 kg/dm ³	
Wärmeleitfähigkeit	20 ºC	45 - 55 W / (m*K)	
Spezifischer elektrischer Widerstand	20 ºC	0.13 (0hm*mm²) / m	

Anmerkung

Alle gemachten Angaben in diesem Datenblatt beruhen auf bestem Wissen und dem neuesten Stand der Technik, jedoch ohne Gewähr. Der Einsatz von Werkstoffen sollte stets produkt- und anwendungsspezifisch mit unseren <u>Fachpersonen im Verkauf</u> oder unserem <u>Werkstofflabor</u> abgesprochen werden.

Ausgabe 2023/10

