

1.4021 1.4028 1.4034

		EN-Norm	AFNOR	AISI	DIN
		1.4021	Z20C13	420	1.4021
Description	Feuillard d'acier résistant à la rouille, durcissable selon EN 10088-2	1.4028	Z33C13	420F	1.4028
-	·	1.4034	Z44C14/Z38C13	420	1.4034

Composition chimique

Matériau	С	Si max.	Mn max.	P max.	S max.	Cr	Ni	Мо	PREN
1.4021	0.16 - 0.25	1.0	1.5	0.040	0.015	12.0 - 14.0	-	-	13
1.4028	0.26 - 0.35	1.0	1.5	0.040	0.015	12.0 - 14.0	-	-	13
1.4034	0.43 - 0.50	1.0	1.0	0.040	0.015	12.5 - 14.5	-	-	14

Analyse chimique selon la norme européenne EN en pourcentages massigues. / *Autres

Propriétés technologiques principales

Les aciers inoxydables martensitiques sont des aciers au chrome trempables, qui sont généralement traités à l'état doux et ensuite trempés pour être utilisés comme pièces finies. Plus la teneur en carbone augmente, plus l'acier devient cassant à l'usinage, mais il est possible d'atteindre des résistances plus élevées après la trempe. L'acier est entièrement magnétique. Cet acier est utilisé pour les outils de coupe, les couteaux, les instruments, les pinces, les pièces de construction mécanique et les accessoires présentant une résistance accrue.

Résistance à la corrosion

Ils présentent une bonne résistance à la corrosion dans les milieux modérés non chlorés tels que les savons, les solvants et les acides organiques, ainsi qu'une bonne résistance à l'eau et à la vapeur d'eau. Les aciers martensitiques ne doivent pas être utilisés à l'état recuit ou trempé et revenu si la résistance à la corrosion est importante. La meilleure résistance à la corrosion est obtenue à l'état trempé et revenu, en combinaison avec une surface finement rectifiée ou polie.

Soudabilité

En général, les aciers inoxydables martensitiques ne doivent pas être soudés.

En tenant compte des paramètres de soudage spéciaux, le 1.4021 peut être soudé.

Traitement thermique

Le recuit d'adoucissement de ces aciers s'effectue à une température de 750°C - 850°C, suivi d'un refroidissement lent au four

Les aciers inoxydables martensitiques avec une teneur en carbone jusqu'à environ 0.4% sont principalement utilisés à l'état trempé et revenu et ceux avec une teneur en C supérieure à 0.4% à l'état durci et revenu.

La trempe a lieu à 950°C - 1'080°, la trempe est effectuée dans l'huile ou dans l'air. La trempe et le revenu s'effectuent au-dessus de 600°C à 700°C et le revenu entre 100°C et 250°C selon la dureté souhaitée.

Résistance à la chaleur

Les aciers trempés et revenus peuvent être utilisés jusqu'à 550°C pendant une courte période. Toutefois, afin d'empêcher la précipitation de phases indésirables, il convient en principe d'éviter la plage comprise entre 400°C et 600°C. L'utilisation d'aciers martensitiques trempés à des températures plus élevées n'a pas de sens (température de revenu).

1.4021 1.4028 1.4034

Propriétés mécaniques

Exécution	Résistance à la traction	Durité	0.2% Limite d'élasticité	Allongement à la rupture
+A recuit	MPa (N/mm2)	HV Valeurs approx.	MPa (N/mm²)	A 80 mm en longeur
1.4021	max 700	max 225	-	min 15%
1.4028	max 740	max 235	-	min 15%
1.4034	max 780	max 245	_	min 12%

^{*} plus hautes résistances à la traction sur demande

La conversion de la résistance à la traction en dureté HV est en principe entachée d'imprécisions et ne donne que des valeurs approximatives. En cas de doute, la méthode d'essai indiquée dans la spécification du produit s'applique et la résistance à la traction est à privilégier.

Propriétés physiques

Densité	$7.7 - 7.71 \mathrm{kg} / \mathrm{dm}^3$
Chaleur spécifique	439 - 460 J / (kg*K)
Conductivité thermique	24.6 - 30 W / (m*K)
Coefficient de dilatation thermique	10.1 - 10.2 (10 ⁻⁶ /K ⁻¹)
résistance électrique spécifique	1.4021, 0.60 (0hm*mm²) / m 1.4028, 0.65 (0hm*mm²) / m 1.4034, 0.55 (0hm*mm²) / m
Modules d'élasticité en GPa	215

Magnétisabilité :PrésenteAptitude au polissage :bon

Structure: Martensitique

Finition de surface

Description	selon EN 10088-2	DIN	ASTM
laminés à chaud, recuits, décapés, sans calamine	1D	c2((IIa)	1
laminé à froid, recuit, "bright annealed".	2R	m (IIId)	ВА
laminé à froid, recuit, décapé, légèrement relaminé	2B	n (IIIc)	2B

1.4021 1.4028 1.4034

Taille

Acier en bandes

épais, laminé à froid	Les largeurs dépendent de l'épaisseur
0.20 – 4.00 mm	2.00 – 1250 mm

Forme de livraison

- en torches
- enroulés sur des bobines
- en bandes redressées
- avec des bords coupés
- avec des bords ébarbés
- avec des bords arrondis
- ou avec des bords spéciaux fabriqués spécialement

Acier en bandes, en tôles

Dimension (mm)	Poids des tôles (kg)
0,10 x 300 x 2000	0.48
0,15 x 300 x 2000	0.72
0,20 x 300 x 2000	0.96
0,30 x 300 x 2000	1.44

Tôles en stock:

Feuilles de tôle 0.50 - 40 mm en formats standard.

D'autres dimensions de bandes peuvent être fabriquées dans notre centre de service.

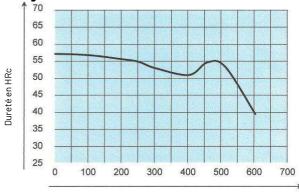
Tolérances d'épaisseur

Feuillard larg	je à froid laminé DIN EN	ISO 9445-2	Feuillard laminé de précision DIN EN ISO 9445-1		
Épaisseur nomi	nale	Tolérance	Épaisseur nominale	Tolérance	
[mm]		[mm]	[mm]	[mm]	
0.30 - 0.499	9	± 0.030			
0.50 - 0.599)	± 0.035	0.10 - 0.149	± 0.006	
0.60 - 0.799)	± 0.040	0.15 - 0.249	± 0.008	
0.80 - 1.199		± 0.045	0.25 - 0.299	± 0.009	
1.20 - 1.499		± 0.055	0.30 - 0.399	± 0.010	
1.50 - 1.999		± 0.060	0.40 - 0.499	± 0.012	
2.00 - 2.499)	± 0.100	0.50 - 0.599	± 0.014	
2.50 - 2.999)	± 0.120	0.60 - 0.799	± 0.015	
3.00 - 3.999		± 0.140	0.80 - 0.999	± 0.018	
4.00 - 6.499)	± 0.150			

Tolérance de largeur: selon DIN EN ISO 9445

Tolérances spéciales : des tolérances d'épaisseur et de largeur plus étroites ou particulières ainsi que des valeurs

de résistance spéciales peuvent être fabriquées dans notre centre de service selon vos


spécifications et sur demande.

Valeurs mécaniques après un traitement thermique

Après trempe	Démarrage °C	Résistance à la traction N/mm2	0.2 % Limite d'élasticité N/mm2	Dureté HV	HRC	Allongement à la rupture A 80 mm (longitudinal et transversal)
1.4021 + QT	200 - 350	1′400 – 1′700	-	440 - 530	44 - 50	-
1.4028 + QT	200 - 350	1′430 – 1′730	-	450 - 550	45 - 51	-
1.4034 + QT	150 - 250	-	-	-	52 - 55	-
1.4021 + QT650	700 - 780	650 - 850	min 450	-	-	min 15%
1.4021+QT750	700 - 780	750 - 950	min 550	-	-	min 15%
1.4028 + QT800	650 - 730	800 – 1'000	min 600	-	-	min 12%

Pour le matériau 1.4034, la dureté ne doit pas dépasser 55 HRC après la trempe et le revenu à 200°C. La dureté de l'acier ne doit pas être trop élevée.

Diagramme de revenu 1.4034

température de contact en °C

Ces valeurs ont été déterminées à partir d'études de laboratoire et d'informations tirées de la littérature. Elles servent uniquement d'aide. L'utilisation de ces données se fait sous votre propre responsabilité. Nous déclinons toute responsabilité.

Note

Toutes les informations fournies dans cette fiche technique sont basées sur les meilleures connaissances et l'état de l'art le plus récent, mais sans garantie. L'utilisation des matériaux doit toujours être discutée avec nos spécialistes des ventes ou notre laboratoire de matériaux sur une base spécifique au produit et à l'application.

Les indications dans ce document sont à titre d'information uniquement. Elles ne constituent en aucun cas un engagement contractuel de notre part.

Édition 2023/11

